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ABSTRACT

Examples of delayed impulsive differential equations show that the delay converts a differential equation with smooth
right side to one with measurable right side. A traditional impulsive differential equation describing the impacts
of impulses can be accompanied by another one that describes the impulse process. In order to support handling
impulsive differential equations with delay, we formulated and proved existence theorems for impulsive differential
equations with measurable right sides following Caratheodory’s techniques. The new setup had impact on the for-
mulation of initial value problems (IVP), the continuation of solutions and the structure of the system of trajectories.
(a) We have two impulsive differential equations to solve with one IVP (ϕ(σ0) = ξ0) which selects one of the impulsive
differential equations by the position of σ0 in [a, bν ]. Solving the selected IVP fully determines the solution on the
other scale with a possible delay. (b) The solutions can be continued at each point of (α, β) × Ω0 =: Ω by the
conditions in the existence theorem. However, the jump at a discontinuity point may land outside Ω. Thus, there is
no continuation of the solution from such points of Ω. If we restrict the jumps into Ω, then all trajectories reaching
a discontinuity point will be continued. If range of jumps 6= Ω then trajectories from outside the range of jumps
cannot be continued backwards. (c) These changes alter the flow of solutions into a directed tree. This tree however
is an in-tree which offers a modelling tool to study interactions of generations.

INTRODUCTION

In this paper we consider some problems arising from
the formulation of impulsive systems with delay in par-
ticular. As a response to problems arising from delay in
impulsive systems, theorems about the existence of their
solutions are formulated and proved. The theory of im-
pulsive systems as an independent area of mathematical
analysis is relatively new. The field started as a response
to the observation that some physical and biological pro-
cesses may also be influenced by short-time perturbations
(impulses). The innovation of the theory of impulsive sys-
tems is manifested in the fact that the time-development
of the state of such a system forms a mapping of bounded
variation instead of continuously differentiable solution
of a differential equation (Bainov and Simeonov, 1995,
Ballinger, 1999, Lakshmikantham et al., 1989, Oyelami,
1999, Samoilenko and Perestyuk, 1995).

This paper gives a summary of some follow ups of re-
sults presented in two Ph.D. theses written and defended
by the two co-authors.
Systems Described by Impulsive Differential
equations

The Bainovian model is a dynamical system controlled
by an absolute continuous term and a term of impulse
effect. In formal terms: Let the process evolve in a pe-
riod of time T := (α, β) ⊂ R. Let Ω0 ⊂ Rn be an
open set and Ω := T × Ω0. Let f : Ω → Rn be an at
least continuous mapping which in addition may fulfil lo-
cal Lipschitz condition in its variable x ∈ Rn for each
fixed t, ∀ (t, x) ∈ Ω. Let H ⊂ Z be an infinite subset
of Z (H = IN or H = Z will be used). Then let the real
time sequence SH = {tk}k∈H ⊂ T be increasing without
finite accumulation points and tk → ±∞, k → ±∞. Let
g : SH ×Rn → Rn be continuous, maybe Lipschitz func-
tion in its variable x, ∀ (tk, x) ∈ Ω. Then the controlling
impulsive differential equation is given by:

x′(t) = f(t, x(t)), ∀t ∈ T \ SH

∆x(tk) = g(tk, x(tk)), ∀tk ∈ SH ,

∆x(tk) := x(tk + 0)− x(tk − 0).

(1)

where (t, x) ∈ Ω.
Equations like (1) can be solved by the usual techniques

of differential equations since these are piece-wise smooth
equations.

*Corresponding author. Email: esubanaita@gmail.com
Department of Mathematics, University of Calabar, Nigeria.
© 2019 International Journal of Natural and Applied Sciences (IJNAS). All rights reserved.



Lipcsey, Z. at. al. 100

Reformulation of the definition of impulsive sys-
tems

We define an ascending step function τ : R → Z with
unit jumps at the impulse points:

τ(t) := k − 1 if tk−1 ≤ t < tk, ∀ k ∈ SZ , (2)

Assumtion 1. Bainov assumes that the set of impulse
points SH ⊂ R does not have any accumulation point in
R. Hence [−M,M ] ∩ SH ⊂ R, ∀M ∈ R+ is a finite set.

Theorem 1. The ascending singular pure jumping func-
tion τ : R→ Z ⊂ R defined by equation (2) is well defined
under Bainov’s assumption 1 and −∞ < τ(t) <∞, ∀ t ∈
R. The set of discontinuity points of τ is SH ⊂ R and
each jump is 1 = τ(tk + 0)− τ(tk − 0), ∀ tk ∈ SH .

Corollary 1. The function τ : R → R is a singular as-
cending function in t which means as an ascending func-
tion it is differentiable almost everywhere and

dτ(t)
dt

= 0 almost everywhere.

The singular ascending function τ defines a singular mea-
sure τ on the Borel sets of R. The domain of function g

is extended to the g̃ : Ω→ Rn from the set SH × Ω0.

With measure τ and g̃, equation (1) can be rewritten
in integral form:

x(t) = x0 +
t∫

t0

(f(s, x(s))ds+ g̃(s, x(s))dτ) ,

t ∈ T. x(t0) = x0.

(3)

Conclusion 1. Equation (3) is an equivalent formulation
of equation (1) hence all impulsive systems have a for-
mulation of (3). However, if we redefine Bainov’s impul-
sive systems with impulses described by ascending singu-
lar functions, we have cases which are not in Bainov and
his group’s category. All Bainov type impulsive systems
are formulated with non-continuous singular ascending
functions (pure jumping functions) but it is known that
there are continuous singular ascending functions (Nagy,
1965).

Impulsive Delayed Differential Equations
The model developed by Bainov and his group

(Ballinger and Liu, 1999) for delayed impulsive systems
uses the same impulse points for the impact of an im-
pulse and for the occurrence of impulses. Consider the
case where a stone breaks the break fluid container at an
impulse time point; there is no assurance that the break

will be lost at another impulse time point. Hence, the
time of the impact of an impulse on the system dynamics
should be independent from the set SH of impulse time
points. Let us see some simple examples to demonstrate
what this would require.

Let the right side of the impulsive differential equation
be defined as follows: Let [a, b] ⊃ (α, β), η := α+ β

2 and
let α− h =: γ ∈ (a, b], h > 0. Then let

f(x(t− ϑ(t)), x(t)) := x(t) + x(t− ϑ(t)),

g(x(t− ϑ(t)), x(t)) := 2x(t) + x(t− ϑ(t)),

∀ t ∈ (α, β), SH ∩ (α, β) = ∅, & γ ∈ SH .

(4)

Let the right continuous solution of the initial value prob-
lem of equation (4) be

x(t) =x0 +
t∫

t0

f(x(s− ϑ(s)), x(s))ds+

t∫
t0

g(x(s− ϑ(s)), x(s))dτ, t ∈ [t0, b].

x(t0) = x0, t0 ∈ (a, γ) \ SH .
(5)

Assume that x(γ − 0) = 1, x(γ + 0) = −1.
Let ϑ be continuous ascending function, ϑ(t) < t, ∀ t ∈
(α, β). Let u(t) := t− ϑ(t)⇒ ϑ(t) = t− u(t).

We will now show some simple examples to demon-
strate that delay equations may lead to differential equa-
tions with measurable right sides.

1. Let u(t) := γ − ε(t − α)(η − t)(β − t) ∀ t ∈ (α, β).
This will give u(α) = u(η) = u(β) = γ hence
x(η − 0) = 1 6= −1 = x(η + 0). Therefore
f(x(t − ϑ(t)), x(t)) has both left and right limits
which are not the same. Hence f is measurable
and not a continuous function of t in [a, b] and ϑ is
ascending with suitable selection of ε.

2. Let tj := η− β − α
2j , 1 ≤ j <∞, tj ↗ η if j →∞.

Then

u(t) :=


γ+ (−1)j

22(η − α) (t− tj)2(tj+1 − t)2,

if tj ≤ t ≤ tj+1, j ∈ IN.

0 otherwise.

The function u(t) = γ, ∀ t = ti and u(t) < γ if ti <
t < ti+1 and i is odd and u(t) > γ if ti < t < ti+1

and i is even. Hence x(ti−0) = −1 & x(ti+0) = 1
if i is odd and x(ti− 0) = 1 & x(ti + 0) = −1 if i is
even.
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Hence lim sup
t↗η

x(t− ϑ(t)) = 1 and

lim inf
t↗η

x(t− ϑ(t)) = −1 .
The delayed solution x(t−ϑ(t)) with this delay has
no left limit hence no limit at η ∈ (α, β). What is
more, there is no limit at tj , ∀ 1 ≤ j < ∞. Hence
f is measurable and not continuous function of t in
[a, b].

3. Continuous descending delay leads to bijective
mapping of the impulse points hence in this case
there are no accumulation points of the images of
impact points but the statement about measurable
right side remains valid.

Conclusion 2. Based on the examples we will study the
existence of the solutions of extended impulsive differen-
tial equations with the following assumptions:

1. The timing of the impulses will be defined by an as-
cending singular function of bounded variation τ in
any bounded interval;

2. To support the delayed equations, the right side
of the impulsive equation will be composed with
f(t, x) & g(t, x) : Ω → Rn, continuous or local
Lipschitz functions in x for each fixed t, and mea-
surable in t for each fixed x like Charatheodory’s
existence theorems are formulated.

3. The solutions will be functions of bounded varia-
tions.

The impulsive differential equations described in this con-
clusion will be referred to as extended impulsive differen-
tial equations.

EXPRESSION OF THE IMPULSIVE
INTEGRAL EQUATIONS IN TERMS OF ONE

MEASURE

The right side of integral equation (5) is a sum of in-
tegrals of two measures. In a differential equation (or the
equivalent integral equation) an integral with one mea-
sure is expected. The singular ascending function τ is
part of the impulsive model for being the impulse time
controller. The details are presented in (Lipcsey et al.,
2019b).
τ will play important role in our analysis therefore we

will need some notations:
Let the domain of the time range of observation of the

process be [a, bλ] ⊂ T . Then τ : [a, bλ] → R+. Let
νλ(t) := t + τ(t) which is a strictly ascending function
νλ : [a, bλ]→ [a, bν ] with bν := b+ τ(b). As an ascending
function νλ has a left- and a right-continuous versions:

µλ,−(t) := νλ(t− 0), ∀ t ∈ [a, bλ]

µλ,+(t) := νλ(t+ 0), ∀ t ∈ [a, bλ]
(6)

Definition 1. As ascending functions, τ and hence νλ
have a countable set of discontinuity points denoted by
Dλ
λ := {t | τ(t−0) 6= τ(t+0)} = {t | νλ(t−0) 6= νλ(t+0)}.

Hence both τ & νλ are continuous in [a, bλ] \Dλ
λ.

The images of the discontinuity points in Dλ
λ ⊂

[a, bλ] are closed intervals [ν(t − 0), ν(t + 0)] =
[µλ,−(t), µλ,+(t)] ⊂ [a, bν ], ∀ t ∈ Dλ

λ. The sets related
to discontinuity of ν as function of t ∈ [a, bλ] are as fol-
lows:

Definition 2. Let Dν
λ := {[µλ,−(t), µλ,+(t)] | t ∈ Dλ

λ} ⊂
P([a, bν ]) (where P([a, bν ]) denotes the power set of
[a, bν ]) and let Dνλ :=

⋃
t∈Dλ

λ

[µλ,−(t), µλ,+(t)] ⊂ [a, bν ].

The left and right continuous versions of νλ define a
continuous mapping µ̂λ : [a, bν ]→ [a, bλ] as follows:

Definition 3. Let

µ̂λ(t) := s, t ∈ [µλ,−(s), µλ,+(s)],

∀ t ∈ [a, bν ], ∃ s ∈ [a, bλ].
(7)

Since νλ is a non-continuous ascending function, the
measure νλ is defined by the semi-ring of right open left
closed intervals with continuity endpoints.

Definition 4. Let the semi-ring of left closed, right open
intervals with continuity points as endpoints in [a, bλ]\Dλ

λ

with measure νλ be
Pν, [a,bλ], c := {[u, v) | u, v ∈ [a, bλ] \Dλ

λ} and
νλ([s, t)) := (µλ,−(t)− µλ,−(s)), ∀ [s, t) ∈ Pν, [a,bλ], c.
Let the smallest σ-algebra containing the semi-ring be
Bν, [a,bλ], c := σ(Pν, [a,bλ], c) with the extended measure
νλ on it.

Since νλ(t) := t + τ(t) and the measure νλ := λ + τ

both λ& τ are absolute continuous with respect to νλ so:

λ(A) =
∫
A

dλ

dνλ
dνλ, ∀A ∈ Bν, [a,bλ], c,

τ(A) =
∫
A

dτ

dνλ
dνλ, ∀A ∈ Bν, [a,bλ], c.

(8)

Using this in equation (3) we get an integral represen-
tation of the impulsive process of bounded variation in
terms of a single measure:

x(t) = x0+
t∫

t0

(
f(s, x(s)) dλ

dνλ
+ g̃(s, x(s)) dτ

dνλ

)
dνλ,

t ∈ T & x(t0) = x0.

(9)
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Properties of the Radon-Nikodym derivatives
The integral in equation (3) composed with two mea-

sures is represented in equation (9) as an integral with
one measure. The Radon-Nikodym derivatives of the two
measures λ & τ are used as written in equation (8). Both
measures λ & τ are absolute continuous with respect to
νλ therefore both can be written as an integral of the
Radon-Nikodym derivatives (Bass, 2011).
With the notations ρλ = dλ

dνλ
& ρτ = dτ

dνλ
the following

important properties are formulated:

Lemma 1. Let Nλ
τ :=

{
dτ

dνλ
> 0
}

& Nλ
λ := (Nλ

τ )′, then

1. λ(Nλ
τ ) = 0 = τ(Nλ

λ );

2. ρλ + ρτ = d(λ+ τ)
dνλ

= dτ

dνλ
+ dλ

dνλ
= 1;

3. ρλ(x) = 1, ∀x ∈ Nλ
λ , ρτ (x) = 1, ∀x ∈ Nλ

τ ;

4. Nν
λ := µ̂−1

λ (Nλ
λ )

Nν
τ := µ̂−1

λ (Nλ
τ )

moreover Nν
λ ∪Nν

τ = [a, bν ] and Nν
λ ∩Nν

τ = ∅

For proof see lemma 2.1 and its proof in ((Lipcsey et al.,
2019b). Since these constructions are discussed in details
in the preceding paper (Lipcsey et al., 2019b), we will just
summarize the concepts needed starting from the ν-scale
representation.
From the total variation scale to bounded variation
functions

Assume that an interval [a, bν ] of the total variation
scale is given with a partition of Borel measurable sets
[a, bν ] = Nν

λ ∪ Nν
τ & Nν

λ ∩ Nν
τ = ∅. Let ν denote the

Lebesgue measure on [a, bν ]. Then the basic concepts de-
veloped from functions of bounded variations are derived
as follows:

Definition 5. The definition of basic mappings for time
representation:

1. Let the time scale interval be [a, bλ] with bλ :=

a+
bν∫
a

χNν
λ
dν;

2. µ̂λ(s) := a+
s∫
a

χNν
λ
dν ∈ [a, bλ], ∀ s ∈ [a, bν ];

3. µλ,−(s) := inf µ̂−1
λ ({s}) ∈ [a, bν ], ∀ s ∈ [a, bλ];

4. µλ(s) := µλ,+(s) := sup µ̂−1
λ ({s}) ∈ [a, bν ], ∀ s ∈

[a, bλ];

5. Dλ
λ := {t |µλ,−(t) < µλ,+(t)} and let Dν

λ :=
{[µλ,−(t), µλ,+(t)] | t ∈ Dλ

λ};

6. Let Dνλ :=
⋃

A∈Dν
λ

A. Then Nν
λ ⊂ [a, bν ] \ Dνλ.

7. Nλ
λ := µ−1

λ,−(Nν
λ ) & Nλ

τ := µ−1
λ,−(Nν

τ ).

Definition 6. The definition of the τ -based mappings
for τ -representation

1. Let the τ -scale interval be [0, bτ ] with bτ :=
bν∫
a

χNντ dν;

2. µ̂τ (s) :=
s∫
a

χNντ dν ∈ [0, bτ ], ∀ s ∈ [a, bν ];

3. µτ,−(s) := inf µ̂−1
τ ({s}) ∈ [a, bν ]; ∀ s ∈ [0, bτ ];

4. µτ (s) := µτ,+(s) := sup µ̂−1
τ ({s}) ∈ [a, bν ], ∀ s ∈

[0, bτ ];

5. Dτ := {t |µτ,−(t) < µτ,+(t)} and let Dν
τ :=

{[µτ,−(t), µτ,+(t)] | t ∈ Dτ};

6. Let Dντ :=
⋃

A∈Dντ

A. Then Nν
τ ⊂ [a, bν ] \ Dντ .

7. Nτ
λ := µ−1

τ,−(Nν
λ ) & Nτ

τ := µ−1
τ,−(Nν

τ ).

Theorem 2. 1. The mappings defined in definition 5
fulfil:

(a) µ̂λ : [a, bν ]→ [a, bλ] is an absolute continuous
ascending function;

(b) µλ,− : [a, bλ] → [a, bν ] is a strictly as-
cending left continuous function while µλ,+ :
[a, bλ] → [a, bν ] is a strictly ascending right
continuous function. Moreover, both map-
pings µλ,−, µλ,+ : [a, bλ] \Dλ

λ → [a, bν ] \ Dνλ
are continuous.

(c) Since µλ,− & µλ,+ are ascending functions
the set of their discontinuity points Dλ

λ is a
countable set.

(d) The mapping µ̂λ : [a, bν ] \ Dνλ → [a, bλ] \ Dλ
and µλ,−, µλ,+ : [a, bλ] \ Dλ → [a, bν ] \ Dνλ
fulfil the identities:

(a.) µ̂λ ◦ µλ,− = µ̂λ ◦ µλ,+ = id[a,bλ]\Dλ
λ

µλ,− ◦ µ̂λ = µλ,+ ◦ µ̂λ = id[a,bν ]\Dν
λ

(b.) µ̂λ ◦ µλ,− = µ̂λ ◦ µλ,+ = id[a,bλ]

if µ̂λ : [a, bν ]→ [a, bλ] &

µλ,−, µλ,+ : [a, bλ]→ [a, bν ].

2. The mappings defined in definition 6 fulfil:

(a) µ̂τ : [a, bν ]→ [0, bτ ] is an absolute continuous
ascending function;

(b) µτ,− : [0, bτ ] → [a, bν ] is a strictly as-
cending left continuous function while µτ,+ :
[0, bτ ] → [a, bν ] is a strictly ascending right
continuous function. Moreover, both map-
pings µτ,−, µτ,+ : [0, bτ ] \ Dτ → [a, bν ] \ Dντ
are continuous.



On the Nature of Impulsive Differential Equations. 103

(c) Since µτ,− & µτ,+ are ascending functions the
set of their discontinuity points Dτ is a count-
able set.

(d) The mapping µ̂τ : [a, bν ] \ Dντ → [0, bτ ] \ Dτ
and µτ,−, µτ,+ : [0, bτ ] \ Dτ → [a, bν ] \ Dντ
fulfil the identities:

(a.) µ̂τ ◦ µτ,− = µ̂τ ◦ µτ,+ = id[0,bτ ]\Dτ

µτ,− ◦ µ̂τ = µτ,+ ◦ µ̂τ = id[a,bν ]\Dντ

(b.) µ̂τ ◦ µτ,− = µ̂τ ◦ µτ,+ = id[0,bτ ]

if µ̂τ : [a, bν ]→ [0, bτ ] &

µτ,−, µτ,+ : [0, bτ ]→ [a, bν ].

Summary 1. Let us summarize the presentations and
the mappings between them.

Representations: I. The Bainovian view of the impul-
sive differential equations is a description of the im-
pulses which are represented in time scale on the
interval [a, bλ];
II. The impulsive differential equations presenting
the impulse process in interaction with the original
system is the representation in τ -scale on the in-
terval [a, bτ ];
III. The absolute continuous representation of the
process is the representation of ν-scale on the in-
terval [a, bν ].

Mappings: There are six mappings:

µλ,− :

µλ,+ :

}
[a, bλ]→ [a, bν ]

µτ,− :

µτ,+ :

}
[a, bτ ]→ [a, bν ]

(10)

µ̂λ : [a, bν ]→ [a, bλ];

µ̂τ : [a, bν ]→ [a, bτ ];
(11)

The functions µλ,−, µλ,+ & µτ,− & µτ,+ are left
and right continuous versions of ν as functions of
t & τ respectively. The functions µ̂λ & µ̂τ are ab-
solute continuous mappings from ν-scale to t & τ

scales respectively.

Measures: The functions define the measures: In
these structures there are measures generated in
t-scale by id[a,bλ] & τ : [a, bλ] → R+, in τ -scale
generated by λ & id[a,bτ ] : [a, bτ ] → R+ and in
ν-scale by id[a,bν ] : [a, bν ] → R+. The mapping ν
generates measures on [a, bλ], & [a, bτ ] also.

Domains of the measures

[a,bλ]:
λ B([a, bλ], λ) Borel sets;
τ Bλ, [a,bλ], c := σ(Pν, [a,bλ], c),
νλ Pν, [a,bλ], c := {[u, v) | u, v ∈ [a, bλ] \Dλ

λ}
[a,bτ ]:
ττ B([a, bτ ], τ) Borel sets;
λτ Bτ, [a,bτ ], c := σ(Pτ, [a,bτ ], c),
ντ Pτ, [a,bτ ], c := {[u, v) | u, v ∈ [a, bτ ] \Dτ

τ }
[a,bν ]:
ν B([a, bν ], ν) Borel sets;
ννλ Bνλ, [a,bν ], c := σ(Pνλ, [a,bν ], c)

Pνλ, [a,bν ], c := {[u, v) | u, v ∈ [a, bν ] \ Dνλ}
νντ Bντ, [a,bν ], c := σ(Pντ, [a,bν ], c)

Pντ, [a,bν ], c := {[u, v) | u, v ∈ [a, bν ] \ Dντ }

All measures in the table generated with inter-

vals having continuity endpoints have continu-

ous/atomic decomposition. Precisely the measures

τ, νλ in [a, bλ]; λτ , ντ in [a, bτ ] and ννλ , νντ in [a, bν ]

have atomic components.

EXISTENCE OF THE SOLUTION OF
EXTENDED IMPULSIVE DIFFERENTIAL

EQUATIONS

The impulsive differential equations were extended to
have the following form: The Bainov’s model of impulsive
differential equations as described in equation (1) will be
used as rewritten in equation (3).
Let the process evolve in a period of time T ⊂ R which is
in an open interval Ω ⊂ T × Rn. Let f, g : Ω → Rn

be measurable functions in the time variable t, and
continuous/Lipschitz-continuous functions in the spatial
variable x.
Let τ : T → R+ be a singular ascending function of the
time parameter t with bounded variation on every closed
bounded interval. Alternatively τ maybe a singular func-
tion of bounded variation on every closed bounded inter-
val/compact subsets of T . If τ is of bounded variation as
described, then its total variation τtv will be used as the
singular ”impulse set”. It is important to see that τ may
have a countable infinite set of jump points, where the
total lengths of these jumps however must be finite.
Solution of the extended impulsive differential
equation

The main results of this paper is a formulation of the
extension of Caratheodory’s existence theorem for the ex-
tended impulsive differential equations with measurable
right side. The basis of our discussion is the approach
presented in (Coddington and Levinson, 1955).
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Caratheodory’s theorem
We present Caratheodory’s existence theorem in Rn as

it is presented in (Coddington and Levinson, 1955) for
one dimension.

Let S ⊂ Ω ⊂ R × Rn be an open set. Let f : S → Rn

be a function not necessarily continuous.

Problem (E): Find an interval I ⊂ [a, b] ⊂ R and an
absolute continuous function ϕ : I ⊂ (a, b) → Rn

such that

(t, ϕ(t)) ∈ S,

ϕ′(t) = f(t, ϕ(t)), almost all t ∈ I.
(12)

Then the function ϕ : I → Rn is a solution of equa-
tion (12) in extended sense.

Charatheodory’s existence theorem (Coddington and
Levinson, 1955) targets finding a solutions to problem (E)
with an initial value (t0, ξ) ∈ S, ϕ(t0) = ξ, when the right
side is a measurable function in its variable t for each fixed
x, ∀ (t, x) ∈ S where ∅ 6= (α, β) = T ⊂ R & Ω0 ⊂ Rn are
open sets and Ω = T × Ω0.

Definition 7. Let a point (t0, ξ) ∈ Ω be selected and let
Rδ,ε(t0, ξ) := (t0 − δ, t0 + δ) × Bε(ξ) ⊂ Ω, 0 < δ, ε be a
cylinder.

Definition 8. Let Ω := T × Ω0, ∅ 6= T := (α, β) ⊂
R, ∅ 6= Ω0 ⊂ Rn is an open set. Let f : Ω → Rn be
a measurable function. Let a point (t0, ξ) ∈ Ω be se-
lected. Let a cylinder Rδ,ε(t0, ξ) ⊂ Ω, 0 < δ, ε exist at
(t0, ξ) ∈ Ω with a function m : (t0− δ, t0 + δ)→ R+ \ {0}
to f on the cylinder Rδ,ε(t0, ξ) such that ‖f(t, x)‖ ≤
m(t) ∀ (t, x) ∈ Rδ,ε(t0, ξ). Then m is a dominating inte-
grable function (D. I. F.) to f on the cylinder Rδ,ε(t0, ξ).

Theorem 3. (Caratheodory): Let f : S → Rn be mea-
surable in t for each fixed x, and let it be continuous in
x for each fixed t, ∀ (t, x) ∈ S. Let (t0, ξ) ∈ S be a fixed
point and let a cylinder Rδ,ε(t0, ξ) ⊂ S exist with a dom-
inating integrable function m : (t0− δ, t0 + δ)→ R+ \ {0}
to f on the cylinder Rδ,ε(t0, ξ) (definition 8). Then
there exists a solution ϕ of problem (E) in extended sense
in an interval (t0 − β, t0 + β), 0 < β ≤ δ, such that
(t, ϕ(t)) ∈ Rδ,ε(t0, ξ), ∀ t ∈ (t0−β, t0 +β) and ϕ(t0) = ξ.

Using Charatheodory’s theorem we can prove the exis-
tence of solution of the equation on ν-scale as formulated
in equation (13). Precisely

Corollary 2. Let f : Nν
λ×Ω0 → Rn & g : Nν

τ ×Ω0 → Rn

hence let h := fχNν
λ

+ gχNντ be measurable in σ for
each fixed x, and let it be continuous in x for each fixed
σ, ∀ (σ, x) ∈ Ω. Let (σ0, ξ0) ∈ Ω be a fixed point

and let a cylinder Rδ,ε(σ0, ξ0) ⊂ Ω exist with a D.I.F.
m : (σ0−δ, σ0+δ)→ R+\{0} on Rδ,ε(σ0, ξ0) to h (defini-
tion 8). Then there exists an interval (σ0−β, σ0+β), 0 <
β ≤ δ for the equation

ϕ(σ) = ξ0+
σ∫

σ0

(
f(v, ϕ(v))χNν

λ
+ g(v, ϕ(v))χNντ

)
dννλ =

ξ0 +
σ∫

σ0

h(v, ϕ(v))dννλ

(13)

such that equation (13) has a solution ϕ in that interval
and ϕ fulfils the condition ϕ(σ0) = ξ0.

Theorem 4. 1. Let h be Bνλ, [a,bν ], c-measurable. Let
η := µλ,+(t) ∈ [a, bν ] \ Dνλ, ∀ t ∈ [a, bλ] and let
ϕ(η) := xλ(µ̂λ(η)) ∀ η ∈ [a, bν ] \ Dνλ. Then the
three formulations below are equivalent.

ϕ(η) = ξ0+
η∫

µλ,+(t0)

(
f(µ̂λ(v), ϕ(v))χNν

λ
+

g(µ̂λ(v), ϕ(v))χNντ
)
dννλ = ξ0+

µλ,+(t)∫
µλ,+(t0)

(
f(µ̂λ(v), xλ(µ̂λ(v)))χNν

λ
+

g(µ̂λ(v), xλ(µ̂λ(v)))χNντ
)
dννλ = ξ0+

t∫
t0

(f(s, xλ(s))χNλ+

g(s, xλ(s))χNλτ
)
dνλ = xλ(t),

∀ t ∈ [a, bλ], ∀ t0 ∈ [a, bλ],

v ∈ [µλ,+(t0), µλ,+(t)].
(14)

By the identities in theorem 2, 1.d, the transfor-
mations µλ,− = µλ,+ : [a, bλ] \ Dλ → [a, bν ] \ Dνλ
and µ̂λ : [a, bν ] \ Dνλ → [a, bλ] \ Dλ are invertible
hence the f components of the integrals mutually
determine each-other. The g function however in
ν-scale is a non-invertible image of the t-scale ver-
sion.

2. Let h be Bντ, [a,bν ], c-measurable. Let η := µτ,+(ϑ) ∈
[a, bν ] \ Dντ , ∀ ϑ ∈ [a, bτ ] \ Dτ and let ϕ(η) :=
x(µ̂τ (η)) ∀ η ∈ [a, bν ] \ Dντ . Then the three formu-
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lations below are equivalent.

ϕ(η) =ξ0 +
η∫

µτ,+(ϑ0)

(
f(µ̂τ (v), ϕ(v))χNν

λ
+

g(µ̂τ (v), ϕ(v))χNντ
)
dνντ = ξ0+

µτ,+(ϑ)∫
µτ,+(ϑ0)

(
f(µ̂τ (v), x(µ̂τ (v)))χNν

λ
+

g(µ̂τ (v), x(µ̂τ (v)))χNντ
)
dνντ = ξ0+

ϑ∫
ϑ0

(f(s, xτ (s))χNλ+

g(s, xτ (s))χNλτ
)
dντ = xτ (ϑ)

∀ ϑ ∈ [a, bτ ] \ Dτ , ∀ ϑ0 ∈ [a, bτ ] \Dτ ,

v ∈ [µτ,+(ϑ0), µτ,+(ϑ)].
(15)

By the identities in theorem 2, 2.d, the transforma-
tions µτ,− = µτ,+ : [a, bτ ] \ Dτ → [a, bν ] \ Dντ and µ̂τ :
[a, bν ] \ Dντ → [a, bτ ] \Dτ are invertible hence the g com-
ponents of the integrals mutually determine each-other.
The f function however in ν-scale is a non-invertible im-
age of the τ -scale version. However, if any of these equa-
tions has a solution then the other transformed versions
also have and the corresponding transformed solutions are
their solutions.

Remark 1. Relations (14) and (15) are valid in
theorem 4 if h is Bνλ, [a,bν ], c-measurable or h is
Bντ, [a,bν ], c-measurable respectively. When h is in-
tegrable B([a, bν ], ν)-measurable then let νh,λ(A) :=∫
A

hdν, ∀ A ∈ Bνλ, [a,bν ], c and νh,τ (A) :=
∫
A

hdν, ∀ A ∈

Bντ, [a,bν ], c be signed measures on Bνλ, [a,bν ], c and on
Bντ, [a,bν ], c absolute continuous with respect to ννλ and ab-
solute continuous with respect to νντ respectively.

By the absolute continuity stated, Bνλ, [a,bν ], c- or
Bντ, [a,bν ], c-measurable Radon Nikodym derivatives exists:

h̃ν,λ := dνh,λ
dννλ

⇔
∫
A

hdν =
∫
A

h̃ν,λdν
ν
λ ,

∀ A ∈ Bνλ, [a,bν ], c

h̃ν,τ := dνh,τ
dνντ

⇔
∫
A

hdν =
∫
A

h̃ν,τdν
ν
τ ,

∀ A ∈ Bντ, [a,bν ], c.

(16)

Theorem 2.5 point (2) (a), (b) in (Lipcsey et al.,
2019b) state that the Radon Nikodym derivative converts
B([a, bν ], ν)-measurable integrable function to Bνλ, [a,bν ], c-

or Bντ, [a,bν ], c-measurable integrands for which formulae
(14) and (15) are valid in theorem 4 respectively. How-
ever, the integrands in the absolute continuous parts of
the solutions will be composed from the Radon Nikodym
derivatives of f and g instead of the functions f and g.
Theorem 2.1 in (Lipcsey et al., 2019a) states that the
Radon Nikodym derivatives of f and g coincide with f

and g on [a, bλ] \ Dλ or [a, bτ ] \ Dτ respectively. Hence
relations (14) and (15) are valid on the sets [a, bλ] \ Dλ
or [a, bτ ] \ Dτ respectively. The νλ- and ντ -integrals on
Dλ & Dτ give the Bainovian impulses.

The initial value problem
We specify first the components of our extended impul-

sive differential equation which we wish to solve.

Condition 1. We assume that [a, bλ], [a, bτ ] & [a, bν ] ⊂
T are as used in this paper. Let f : Nλ

λ × Ω0 ⊂
[a, bλ]×Ω0 → Rn, g : Nτ

τ ×Ω0 ⊂ [a, bτ ]×Ω0 → Rn, & h :
[a, bν ]× Ω0 → Rn are measurable functions and

h(σ, η) :=(f ◦ µλ,− × χNν
λ

)(σ, η)+

(g ◦ µτ,− × χNντ )(σ, η),

∀ (σ, η) ∈ [a, bν ]× Ω0.

(17)

Let the conditions specified in theorem 3 and corollary 2
be fulfilled by f & g equivalently let the solutions exist.

The initial value problem specifies a time point ei-
ther t0 ∈ (a, bλ) or a time point ϑ0 ∈ (a, bτ ) and an
initial value ξ0 ∈ Ω0. These time specifications define
σ0 ∈ (a, bν) by either σ0 := µλ,−(t0) or σ0 := µτ,−(ϑ0)
such that the solution of equation (13) fulfils the initial
condition ϕ(σ0) = ξ0 with (σ0, ξ0) ∈ Ω. Either σ0 ∈ Nν

λ

or σ0 ∈ Nν
τ . Both mappings σ0 ∈ Nν

λ → µ̂λ(σ0) = t0 ∈
Nλ
λ ⊂ [a, bλ] or σ0 ∈ Nν

τ → µ̂τ (σ0) = ϑ0 ∈ Nτ
τ ⊂ [a, bτ ]

are bijective by theorem 2, point 1. (d)(b.) or point 2.
(d)(b.) respectively. As a conclusion, either the t-scale
solution xλ := ϕ ◦ µλ,+ fulfils xλ(t0) = ξ0 or the τ -scale
solution xτ := ϕ ◦ µτ,+ fulfils xτ (ϑ0) = ξ0 subject to the
fulfilment of σ0 ∈ Nν

λ or σ0 ∈ Nν
τ respectively. Contin-

uation of the solutions
In corollary 2 we proved that if the condition of ex-

istence of local integrable dominator and conditions of
continuity are fulfilled ∀ (σ0, ξ0) ∈ Ω then there exists a
δ(σ0,ξ0) > 0 such that the initial value problem with the
initial condition ϕ(σ0) = ξ0 has a solution on the interval
[σ, σ + δ(σ,x)) ∀(σ0, ξ0) ∈ Ω. This means that the solu-
tion cannot stop in Ω equivalently in (a, bν) ⊂ T , it can
stops at a time point σstop ∈ [a, bν ] ⊂ T on a boundary
point (σstop, ϕ(σstop)) ∈ ∂Ω only. However, dealing with
impulsive differential equations, we have to analyse the
role of discontinuity points.
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Using the notations in equation (1), the behaviour of
impulsive systems is determined by I(tk, y) := x(tk−0)+
g(tk, y), x(tk − 0) =: y ∈ Ω0. If I(tk, x(tk − 0)) /∈ Ω0,
the process stops at (tk, x(tk − 0)) ∈ Ω. If I(tk, y) ∈
Ω0, ∀(tk, y) ∈ Ω then all trajectory landing at a disconti-
nuity point has continuation. If I is not onto Ω0 then any
initial value problem with (tk, ξ0) ∈ {tk} × (Ω0 \ R(I))
(where R(I) is the range of I) has a solution in an in-
terval [tk, tk + δ), δ > 0, but no continuation backwards
(there is no history).
Uniqueness of solutions

If the functions f & g are local Lipschitz-continuous
for each fixed time parameter in their space variable then
an initial value problem has locally unique solution by
Caratheodory (see (Coddington and Levinson, 1955)).
This means that a solution of an initial value problem
can not split into more than one trajectory.

On the other hand trajectories may be connected to-
gether by impulse effects. This will make the flow of
solutions to form a tree structure instead of a flow with
trajectories coming from discontinuity points without his-
tory as leaves. This tree is directed, with orientation
from the leaves to the root which is called in-tree or anti-
arborescence (see (Fournier, 2013)).

CONCLUSION

We established an existence theorem for impulsive
differential equations with measurable right side which
facilitates the analysis of delayed impulsive differential
equations. The structure of solutions forms a tree struc-
ture, with orientation from the leaves to the root which
is an in-tree or anti-arborescence. This gives wide range
of modelling facilities by enabling to model and study
mixing new generations in addition to studying flows of
solutions.
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