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On the Nature of Impulsive Differential Equations and the Existence of its Solutions. The Emerging
facts.
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ABSTRACT

Examples of delayed impulsive differential equations show that the delay converts a differential equation with smooth
right side to one with measurable right side. A traditional impulsive differential equation describing the impacts
of impulses can be accompanied by another one that describes the impulse process. In order to support handling
impulsive differential equations with delay, we formulated and proved existence theorems for impulsive differential
equations with measurable right sides following Caratheodory’s techniques. The new setup had impact on the for-
mulation of initial value problems (IVP), the continuation of solutions and the structure of the system of trajectories.
(a) We have two impulsive differential equations to solve with one IVP (p(0¢) = &) which selects one of the impulsive
differential equations by the position of o¢ in [a,b,]. Solving the selected IVP fully determines the solution on the
other scale with a possible delay. (b) The solutions can be continued at each point of (e, 8) X Qo =: Q by the
conditions in the existence theorem. However, the jump at a discontinuity point may land outside 2. Thus, there is
no continuation of the solution from such points of Q. If we restrict the jumps into 2, then all trajectories reaching
a discontinuity point will be continued. If range of jumps # 2 then trajectories from outside the range of jumps
cannot be continued backwards. (¢) These changes alter the flow of solutions into a directed tree. This tree however

is an in-tree which offers a modelling tool to study interactions of generations.

INTRODUCTION

In this paper we consider some problems arising from
the formulation of impulsive systems with delay in par-
ticular. As a response to problems arising from delay in
impulsive systems, theorems about the existence of their
solutions are formulated and proved. The theory of im-
pulsive systems as an independent area of mathematical
analysis is relatively new. The field started as a response
to the observation that some physical and biological pro-
cesses may also be influenced by short-time perturbations
(impulses). The innovation of the theory of impulsive sys-
tems is manifested in the fact that the time-development
of the state of such a system forms a mapping of bounded
variation instead of continuously differentiable solution
of a differential equation (Bainov and Simeonov, 1995,
Ballinger, 1999, Lakshmikantham et al., 1989, Oyelami,
1999, Samoilenko and Perestyuk, 1995).

This paper gives a summary of some follow ups of re-
sults presented in two Ph.D. theses written and defended
by the two co-authors.

Systems Described by Impulsive Differential

equations
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The Bainovian model is a dynamical system controlled
by an absolute continuous term and a term of impulse
effect. In formal terms: Let the process evolve in a pe-
riod of time T := (a, ) C R. Let Qo C R" be an
open set and 2 := T x Qp. Let f: @ — R" be an at
least continuous mapping which in addition may fulfil lo-
cal Lipschitz condition in its variable x € R"™ for each
fixed t, V (t,z) € Q. Let H C Z be an infinite subset
of Z (H =N or H= Z will be used). Then let the real
time sequence Sy = {tr}rem C T be increasing without
finite accumulation points and tx — +o00, k — +o0o. Let
g:Su x R" — R" be continuous, maybe Lipschitz func-
tion in its variable x, V (tx,z) € Q. Then the controlling

impulsive differential equation is given by:

z'(t) = f(t,=(t), VteT\Su
Al’(tk) = g(tk,m(tk)), Vit € SH, (1)
Az(ty) := z(tr + 0) — z(tx — 0).

where (¢, x) € .
Equations like (1) can be solved by the usual techniques
of differential equations since these are piece-wise smooth

equations.
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Reformulation of the definition of impulsive sys-
tems
We define an ascending step function 7 : R — Z with

unit jumps at the impulse points:
T(t):= k-1 ifteer <t<ty, VEE Sz, (2)

Assumtion 1. Bainov assumes that the set of impulse
points Sy C R does not have any accumulation point in
R. Hence [-M,M]N Sy C R, ¥ M € R" is a finite set.

Theorem 1. The ascending singular pure jumping func-
tionT : R — Z C R defined by equation (2) is well defined
under Bainov’s assumption 1 and —oo < 7(t) < oo, Vit €
R. The set of discontinuity points of T is Sy C R and
each jump is 1 = 7(tx, + 0) — 7(tx — 0), V tx € Su.

Corollary 1. The function T : R — R is a singular as-
cending function in t which means as an ascending func-

tion it is differentiable almost everywhere and

dr(t)
dt

=0 almost everywhere.

The singular ascending function T defines a singular mea-
sure T on the Borel sets of R. The domain of function g
is extended to the g : Q — R™ from the set Sg x Q.

With measure 7 and §, equation (1) can be rewritten

in integral form:

t

a(t) = w0 + / (F(s, 2())ds + 3(s, 2(s))dr)

to

3)

Conclusion 1. Equation (3) is an equivalent formulation
of equation (1) hence all impulsive systems have a for-
mulation of (3). However, if we redefine Bainov’s impul-
sive systems with impulses described by ascending singu-
lar functions, we have cases which are not in Bainov and
his group’s category. All Bainov type impulsive systems
are formulated with mon-continuous singular ascending
functions (pure jumping functions) but it is known that
there are continuous singular ascending functions (Nagy,
1965).

Impulsive Delayed Differential Equations

The model developed by Bainov and his group
(Ballinger and Liu, 1999) for delayed impulsive systems
uses the same impulse points for the impact of an im-
pulse and for the occurrence of impulses. Consider the
case where a stone breaks the break fluid container at an

impulse time point; there is no assurance that the break

will be lost at another impulse time point. Hence, the
time of the impact of an impulse on the system dynamics
should be independent from the set Sy of impulse time
points. Let us see some simple examples to demonstrate
what this would require.

Let the right side of the impulsive differential equation
be defined as follows: Let [a,5] 5 (a, 8), n = 2
let @« —h =: 7 € (a,b], h > 0. Then let

and

[t —9(t), (1) = z(t) + z(t — I()),
g(z(t —9(1)), (1)) = 2x(t) + z(t = I(t), (4)
vVte (a,B), Sun(a,B) =0, &~ € Su.

Let the right continuous solution of the initial value prob-

lem of equation (4) be
£(t) =zo + / Fa(s — D(s)), 2(s))ds+

/g(w(s —9(s)),z(s))dr, t€ [to,b].
z(to) = o, to € (a,7) \ SH.
(5)

Assume that z(y — 0) =1, z(y+0) = —1.
Let ¥ be continuous ascending function, ¥#(t) < ¢, Vt €
(o, B). Let u(t) :=t —9(t) = () =t — u(t).

We will now show some simple examples to demon-
strate that delay equations may lead to differential equa-

tions with measurable right sides.

1. Let u(t) ==y —e(t—a)(n—t)(B—-t) Vt e (o, ).
This will give u(a) = u(n) = u(B8) = v hence
z(p —0) = 1 # —1 = z(n + 0). Therefore
f(z(t — ¥(¢)),z(t)) has both left and right limits
which are not the same. Hence f is measurable
and not a continuous function of t in [a,b] and ¥ is

ascending with suitable selection of e.

2. Lett]-::n—ﬁ;a,1§j<oo7 t; /' nif j — oo.

2j
Then

t—t;)%(tjo1 —1)?
fy—'_ 22(77705)( ]) (]+1 ) )
u(t) = if ¢t; <t<tj41, 7€ N
0 otherwise.

The function u(t) =, Vt =t; and u(t) < yift; <
t < ti+1 and i is odd and u(t) > v if t; < t < tit1
and ¢ is even. Hence z(¢; —0) = -1 & z(t; +0) =1
ifiis odd and z(t; —0) =1 & z(t; +0) = —1if i is

even.
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Hence lim sup z(t — 9(t)) = 1 and

o tn

hrtn/‘ilnf z(t—9()=-1.

The delayed solution z (¢ — ¥(¢)) with this delay has
no left limit hence no limit at n € («, 3). What is
more, there is no limit at ¢;, V1 < j < co. Hence
f is measurable and not continuous function of t in
[a,b].

3. Continuous descending delay leads to bijective
mapping of the impulse points hence in this case
there are no accumulation points of the images of
impact points but the statement about measurable

right side remains valid.

Conclusion 2. Based on the examples we will study the
existence of the solutions of extended impulsive differen-

tial equations with the following assumptions:

1. The timing of the impulses will be defined by an as-
cending singular function of bounded variation T in

any bounded interval;

2. To support the delayed equations, the right side
of the impulsive equation will be composed with
flt,z) & g(t,z) : Q@ — R", continuous or local
Lipschitz functions in x for each fized t, and mea-
surable in t for each fized z like Charatheodory’s

existence theorems are formulated.

3. The solutions will be functions of bounded varia-

tions.

The impulsive differential equations described in this con-
clusion will be referred to as extended impulsive differen-

tial equations.

EXPRESSION OF THE IMPULSIVE
INTEGRAL EQUATIONS IN TERMS OF ONE
MEASURE

The right side of integral equation (5) is a sum of in-
tegrals of two measures. In a differential equation (or the
equivalent integral equation) an integral with one mea-
sure is expected. The singular ascending function 7 is
part of the impulsive model for being the impulse time
controller. The details are presented in (Lipcsey et al.,
2019b).

7 will play important role in our analysis therefore we
will need some notations:

Let the domain of the time range of observation of the
[a,by] — RT. Let
vA(t) := t + 7(t) which is a strictly ascending function
vy : [a,bx] = [a,b,] with b, := b+ 7(b). As an ascending

function vy has a left- and a right-continuous versions:

process be [a,bx] C T. Then 7 :

/L)\’_(t) = l/,\(t — O), Vite [a, b>\]

(6)
MAnL(t) = V)\(t + 0)7 Vite [a7 b>\]

Definition 1. As ascending functions, 7 and hence vy
have a countable set of discontinuity points denoted by
D} = {t|7(t—0) # 7(t+0)} = {t|va(t—0) # va(t+0)}.
Hence both 7 & vy are continuous in [a, b] \ D3.

The images of the discontinuity points in D} C
[a,bx] are closed intervals [v(t — 0),v(t + 0)] =
[a,— (t), a,+(t)] C [a,b)], ¥ t € DX. The sets related
to discontinuity of v as function of ¢t € [a,by] are as fol-

lows:

Definition 2. Let DY := {[ux_(t), ur+(t)] |t € D} C
P(la,b,]) (where P([a,b,]) denotes the power set of
[a,b.]) and let DY := U [x,— (1), per,+(8)] C [a, by ].

A
tED)\

The left and right continuous versions of vy define a

continuous mapping fix : [a,b,] — [a, bs] as follows:
Definition 3. Let

n(t) =5, € [, (s), pr+ ()],

7
Vi€ [a,b], Is€la,br] @

Since vy is a non-continuous ascending function, the
measure vy is defined by the semi-ring of right open left

closed intervals with continuity endpoints.

Definition 4. Let the semi-ring of left closed, right open
intervals with continuity points as endpoints in [a, bx]\ D3

with measure vy be

Pu, [aby], ¢ = {[u,v) |uv€[abA}\DA}and

vA([s,1) = (pa,—(t) — px,—(s)), V¥ [s,1) € Pu, la,pr), ¢

Let the smallest o-algebra containing the semi-ring be
By, japy], ¢ = 0(Py, [a,by], c) With the extended measure
vy on it.

Since vx(t) := t + 7(t) and the measure vy := A+ 7

both A& 7 are absolute continuous with respect to vy so:

/7611/)\, VAEBq,le

/adl/)\7 VAGB , [a,bal,

A

Using this in equation (3) we get an integral represen-
tation of the impulsive process of bounded variation in

terms of a single measure:

z(t) = zo+
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Properties of the Radon-Nikodym derivatives

The integral in equation (3) composed with two mea-
sures is represented in equation (9) as an integral with
one measure. The Radon-Nikodym derivatives of the two
measures A & 7 are used as written in equation (8). Both
measures A & 7 are absolute continuous with respect to
vy therefore both can be written as an integral of the
Radon-Nikodym derivatives (Bass, 2011).

With the notations py = ﬂ & pr = d—T the following
dl/,\ dI/A

important properties are formulated:

Lemma 1. Let N} := {j—T > O} & NY := (N}, then
U

1. A(N}) =0=71(N{);
CdA+T)  dr dh
2 P +P7— o dV)\ o dV)\ + dV)\ -
3. pa(z) =1, Vz € N3, p,(x) =1, Vz € N};
4. NX = a3t (NR)
Ny = i3 (N7)
moreover NY UNY = [a,b,] and NYNN; =10

’

For proof see lemma 2.1 and its proof in ((Lipcsey et al.,
2019b). Since these constructions are discussed in details
in the preceding paper (Lipcsey et al., 2019b), we will just
summarize the concepts needed starting from the v-scale
representation.

From the total variation scale to bounded variation
functions

Assume that an interval [a,b,] of the total variation
scale is given with a partition of Borel measurable sets
[a,b,] = NY UN; & NY NN/ = (. Let v denote the
Lebesgue measure on [a, b,]. Then the basic concepts de-
veloped from functions of bounded variations are derived

as follows:

Definition 5. The definition of basic mappings for time

representation:

1. Let the time scale interval be [a,bx] with by :=
by

a+ /XN;dl/;

a

s

2. fix(s) == a—l—/x]\ridu € [a,bx], Vs € [a,b.];

3. px—(s) ==inf 45" ({s}) € [a,bu], Vs € [a,br];

4. pa(s) = pa+(s) == sup i, ' ({s}) € [a,b], V s €
[avbh};

5. D3 = {t|ur—_(t) < pr+(t)} and let DY :=
{lir—(0), pr+ (D] | ¢ € DR}

6. Let DY := | J A. Then NY C[a,b,]\D5.
AED/”\

7. NR =L (V) & NP =t (NY).

Definition 6. The definition of the 7-based mappings

for T-representation

1. Let the 7-scale interval be [0,br] with b, :=
by

XNy dv;

a
E]

2. fr(s) := /XNgdu €[0,b;], Vs € [a,b.];

3. pr—(s) :=inf g7 ({s}) € [a,b.]; Vs €[0,b];
)

4. pr(s) == pr4(s) :=sup g7 ({s}) € [a,b.], V s €
[07 b‘l’]7
5. Dy = {t|pr-(t) < pr+(t)} and let DY =

{lpr,— (1), pr+ (O] |t € Dr}s
6. Let DY := | J A. Then NY C [a,b,]\ D%
AeDY

7. N = pr L (NY) & NI = L (NY).

Theorem 2.
Sulfil:

(a) i :[a,b] = [a,ba] is an absolute continuous

1. The mappings defined in definition 5

ascending function;

(b) px.—
cending left continuous function while px + :

[a,bx] — [a,b] is a strictly as-

[a,bx] — [a,by] is a strictly ascending right
continuous function. Moreover, both map-
pings fix,—, fix+ : [a,03]\ DX = [a, b] \ DY
are continuous.

(c) Since px,— & ux+ are ascending functions
the set of their discontinuity points D3 is a
countable set.

(d) The mapping fix : [a,b,] \ DX — [a,bx] \ Da
and px,—, pa+ : [a,bx]\ D — [a,b,] \ DX
fulfil the identities:

(@.) fix o pix,— = fix o pux,+ = id[a,bx]\Di
[ixn,— © fix = pix+ © fix = idjap, ]\ DY
(b.) fix © pin,— = fax 0 pixn,4 = id[qpy)
if fa s [a, b)) = [a,bx] &

Hx,—s BX+ ¢ [a7 b>\] - [aabl’]'

2. The mappings defined in definition 6 fulfil:

(a) fir :[a,b,] — [0,b:] is an absolute continuous
ascending function;

(b) pr— : [0,b:] — [a,b,] is a strictly as-
cending left continuous function while pr 4 :
[0,b-] — [a,by] is a strictly ascending right
continuous function. Moreover, both map-
pings pir—, pry ¢ [0,b-]\ Dr — [a,by] \ D7
are continuous.



On the Nature of Impulsive Differential Equations. 103

(¢) Since pr,— & pr+ are ascending functions the
set of their discontinuity points D+ is a count-

able set.

(d) The mapping fir : [a,b,] \ DY — [0,b,] \ D~
and Hr,—s Hr4 - [07b7'] \ D; — [a7bV] \D:
fulfil the identities:

(a.) fir © pir,— = fir © pir,+ = id[ob, ]\ D,
Hr,— O fir = pr4 © fir = id[q b, ]\D¥
(b.) fir © pr— = fir O ptr - = idjop, ]
if fr < Ja,b,] = [0,b7] &
Pr—y fir+ 1 [0,b7] = [a, by].

Summary 1. Let us summarize the presentations and

the mappings between them.

Representations: I. The Bainovian view of the impul-
sive differential equations is a description of the im-
pulses which are represented in time scale on the
interval [a, by];

1I. The impulsive differential equations presenting
the impulse process in interaction with the original
system is the representation in T-scale on the in-
terval [a, br];

III. The absolute continuous representation of the
process is the representation of v-scale on the in-

terval [a, b, ].

Mappings: There are siz mappings:

" } 0.00] = ]

Hx+ (10)
M, — } [a,br] N [(1,7 by]

K+ ¢

fix + [a,bu] = [a,02]; (11)

fr :a,by] = [a,br];
The functions px,—, pxr+ & pr— & pr 4 are left
and right continuous versions of v as functions of
t & 7 respectively. The functions fix & fir are ab-
solute continuous mappings from v-scale to t & T

scales respectively.

Measures: The functions define the measures: In
these structures there are measures generated in
t-scale by idpp,) & T @ [a,b] — R™, in T-scale

[a,b;] — RT and in

v-scale by idjqp,) : [a,b,] — R™. The mapping v

generated by X & idpp,) :
generates measures on [a,bz], & [a,b;] also.

Domains of the measures

[a,b]:

XA | B([a,bx],\) Borel sets;

T | B, (abal, ¢ = (P, [a,br), o)

U | Pulay), e = {[u,v) | u,v € [a,bx] \ D3}
[a,b;]:

7r | B([a,br],T) Borel sets;

A | Britawe, e = 0(Pr (aps], c)s

Vr | Prlaps], e = {w,v) | u,v € [a,b:]\ DT}
[a,b,]:

v | B(la,b.],v) Borel sets;

VX | BX el e = 0(PX fabul, o)
Px, (b, e = {[u,v) | w,v € [a,b,] \ DX}
V| B e, e = 0(PY labul, )
Py lab], ¢ = 1u,v) | u,v € [a,b,] \ DI}

All measures in the table generated with inter-
vals having continuity endpoints have continu-
ous/atomic decomposition. Precisely the measures
T,Ux @0 [a,ba]; Ar, vz in [a,br] and v¥, VY in [a,by]

have atomic components.

EXISTENCE OF THE SOLUTION OF
EXTENDED IMPULSIVE DIFFERENTIAL
EQUATIONS

The impulsive differential equations were extended to
have the following form: The Bainov’s model of impulsive
differential equations as described in equation (1) will be
used as rewritten in equation (3).

Let the process evolve in a period of time 7" C R which is
in an open interval Q C T x R™. Let f,g : @ — R"
be measurable functions in the time variable t, and
continuous/Lipschitz-continuous functions in the spatial
variable x.
Let 7 : T — R™ be a singular ascending function of the
time parameter ¢t with bounded variation on every closed
bounded interval. Alternatively 7 maybe a singular func-
tion of bounded variation on every closed bounded inter-
val/compact subsets of T'. If 7 is of bounded variation as
described, then its total variation 7, will be used as the
singular ”"impulse set”. It is important to see that 7 may
have a countable infinite set of jump points, where the
total lengths of these jumps however must be finite.
Solution of the extended impulsive differential
equation

The main results of this paper is a formulation of the
extension of Caratheodory’s existence theorem for the ex-
tended impulsive differential equations with measurable
right side. The basis of our discussion is the approach

presented in (Coddington and Levinson, 1955).
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Caratheodory’s theorem

We present Caratheodory’s existence theorem in R™ as
it is presented in (Coddington and Levinson, 1955) for
one dimension.

Let S C 2 C R x R" be an open set. Let f: S — R"

be a function not necessarily continuous.

Problem (E): Find an interval I C [a,b] C R and an
absolute continuous function ¢ : I C (a,b) — R"
such that

(t, (1)) € 5, (12)
o' (t) = f(t, ©(t)), almost all t € I.

Then the function ¢ : I — R" is a solution of equa-

tion (12) in extended sense.

Charatheodory’s existence theorem (Coddington and
Levinson, 1955) targets finding a solutions to problem (E)
with an initial value (to,&) € S, ¢(to) = £, when the right
side is a measurable function in its variable ¢ for each fixed
z,V (t,z) € S where § # (o, 8) =T C R & 9 C R"™ are
open sets and Q2 =T x Q.

Definition 7. Let a point (to,£) € 2 be selected and let
Rg,g(to,g) = (to — 5, to + 5) X Bg(f) c 0< (5,6 be a
cylinder.

Definition 8. Let Q := T x Qo, 0 # T = (o,8) C
R, 0 # Qo C R"isanopenset. Let f: Q — R" be
a measurable function. Let a point (t0,&) € Q be se-
lected. Let a cylinder Rs,c(t0,£) C 2, 0 < 0, € exist at
(to, &) € Q with a function m : (to — 6, t0 +6) — R\ {0}
to f on the cylinder Rs.(to,&) such that || f(¢,2)| <
m(t) V¥ (t,x) € Rs,c(to,§). Then m is a dominating inte-
grable function (D. I. F.) to f on the cylinder Rs(to,§).

Theorem 3. (Caratheodory): Let f : S — R™ be mea-
surable in t for each fized x, and let it be continuous in
z for each fized t, ¥ (t,x) € S. Let (to0,§) € S be a fized
point and let a cylinder Rs.c(to,§) C S exist with a dom-
inating integrable function m : (to — 6, to+6) — RT\ {0}
to f on the cylinder Rs.(to,&) (definition 8). Then
there exists a solution ¢ of problem (E) in extended sense
in an interval (to — B, to + 8),0 < B < &, such that
(t, (1)) € Rse(to,§), VI € (to— B, to+13) and p(to) = &.

Using Charatheodory’s theorem we can prove the exis-
tence of solution of the equation on v-scale as formulated

in equation (13). Precisely

Corollary 2. Let f: Ny xQp — R" & g: N xQo — R"
hence let h = fXN;’ + gxnr be measurable in o for
each fized x, and let it be continuous in x for each fized
o, ¥V (o,z) € Q. Let (00,&) € Q be a fized point

and let a cylinder Rs.(00,&0) C Q exist with a D.LF.
m: (00—6, 00+3) — RT\{0} on Rs.(00,&0) to h (defini-
tion 8). Then there exists an interval (co—f, co+), 0 <
B < for the equation

w(o) =&+

/ (0, o)y + 90, 90 xnz) df =

a0

o

€+ / h(v, o(v))du

(13)

such that equation (13) has a solution ¢ in that interval

and @ fulfils the condition ¢(o0) = &o.

Theorem 4. 1. Let h be BY (4, c-measurable. Let
n = px+(t) € [a,b]\ DX, ¥V t € [a,bx] and let
o(n) = ax(@am) ¥ 0 € [a,b,] \ DX Then the

three formulations below are equivalent.

n
w(n) = &o+

kx4 (to)

9(fir(v), e(v)xnr ) dvX = o+

(F(x (), p(v)xny+

a4 ()
(F(ax(v), A (fia (v))xny +
e, +(to)

9 (v), 2 (1 (0)) Jxve ) i = o+

/ (F (s, 22 (8))xms +

to
g(s,2a(s))x w2 ) dva = za(1),
Vite [a, b)\],Vto S [a, b)\],

v € [+ (o), pa,+(8)]-
(14)

By the identities in theorem 2, 1.d, the transfor-
mations pix,— = pia+ : [a,bx] \ Dx — [a,b,] \ DX
and fix : [a,b,] \ DY — [a,bx] \ Da are invertible
hence the f components of the integrals mutually
determine each-other. The g function however in
v-scale is a non-invertible image of the t-scale ver-

sion.

2. Let h be BY (., .-measurable. Letn := pr 1 (9) €
l[a,b,] \ DY, ¥V ¥ € [a,b;] \ Dr and let ¢(n) =
z(fir(n)) V1 € [a,b,] \ DY. Then the three formu-
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lations below are equivalent.

w(n) =& +

pr,+(90)

(f(ﬂf(v)v @(U))XN; +
9(fir (v), p(v)xnr) dvy = o+
B+ (9)
(£ (), 21 () xvg +
tr,+(Y90)

9(ir (v), 2 (A (v))xny ) dvy = ot

/ (F (5 20 (8))xws

Yo

65,22 ()xs ) e = ()

V¥ € [a,b:]\ Dr,V Y € [a,b;]\ Dr,

0 € [pr 4 (o), pir 4 (V)]
(15)

By the identities in theorem 2, 2.d, the transforma-
tions pir,— = pir4 : [a,b:] \ Dy — [a,b,] \ DY and fir :
[a,b,] \ DY — [a,b;] \ D; are invertible hence the g com-
ponents of the integrals mutually determine each-other.
The f function however in v-scale is a non-invertible im-
age of the T-scale version. However, if any of these equa-
tions has a solution then the other transformed versions
also have and the corresponding transformed solutions are

their solutions.

Remark 1. Relations (14) and (15) are valid in
theorem 4 if h is B [, ~measurable or h is
;_/7 la,bu], ¢ When h is in-

tegrable B([a,b,],v)-measurable then let vy (A) :=
/hdu, VA€ B [ab), c and vp o (A) = /hdu7 VAEe

-measurable respectively.

A A

v . v
B lab,], c be signed measures on BY (., ] . and on
BY (45,1, c absolute continuous with respect to v§ and ab-

solute continuous with respect to vZ respectively.

By the absolute continuity stated, BY [, or

vl e”
v
7, la,by], ¢

_ d _
Ry = A @/hdu:/hy,AduK,
dvy
A A
VAEB b e

Py = DT <:>/hdz/: /E”dy:,
dv¥ ’
A A

VAEB, (ab), e

-measurable Radon Nikodym derivatives exists:

(16)

Theorem 2.5 point (2) (a), (b) in (Lipcsey et al.,
2019b) state that the Radon Nikodym derivative converts

B([a, by], v)-measurable integrable function to BY |, ;.. -

or B} (as,], -measurable integrands for which formulae
(14) and (15) are valid in theorem 4 respectively. How-
ever, the integrands in the absolute continuous parts of
the solutions will be composed from the Radon Nikodym
derivatives of f and g instead of the functions f and g.

Theorem 2.1 in (Lipcsey et al., 2019a) states that the
Radon Nikodym derivatives of f and g coincide with f
and g on [a,by] \ Dx or [a,b;] \ D, respectively. Hence
relations (14) and (15) are valid on the sets [a,bx] \ Dx
or [a,bs] \ D, respectively. The vx- and v, -integrals on

Dy & D, give the Bainovian impulses.

The initial value problem
We specify first the components of our extended impul-

sive differential equation which we wish to solve.

Condition 1. We assume that [a,b)], [a,b:] & [a,b.] C
T are as used in this paper. Let f : N x Qo C
[a,b)\]XQQ —)Rn, g:N;—XQO C [a,bT}XQQ — Rn, & h:

[a,b,] x Qo — R"™ are measurable functions and

h(o,m) :==(f o pr,— x xnv)(o,n)+
(9o pr— X xny)(o,m), 17)
Y (o,7m) € [a,b,] X Qo.

Let the conditions specified in theorem 8 and corollary 2

be fulfilled by f & g equivalently let the solutions exist.

The initial value problem specifies a time point ei-
ther to € (a,by) or a time point Jo € (a,b;) and an
initial value & € Q. These time specifications define
oo € (a,by) by either oo := pux,—(to) or oo := pr,— (%)
such that the solution of equation (13) fulfils the initial
condition ¢(o0) = & with (00,&) € Q. Either o9 € NY
or oo € NY. Both mappings oo € NY — firn(00) = to €
N} C [a,br] or 09 € NY = [i-(00) = 90 € N] C [a,b:]
are bijective by theorem 2, point 1. (d)(b.) or point 2.
(d)(b.) respectively. As a conclusion, either the t-scale
solution ) := ¢ o px 4 fulfils 25 (to) = & or the 7-scale
solution z- := @ o ur 1 fulfils x> (¥9) = & subject to the
fulfilment of o9 € Ny or o9 € Ny respectively. Contin-
uation of the solutions

In corollary 2 we proved that if the condition of ex-
istence of local integrable dominator and conditions of
continuity are fulfilled V (00,&0) € Q2 then there exists a
0(s0,£0) > 0 such that the initial value problem with the
initial condition ¢(o9) = &o has a solution on the interval
0,0 + 6(0,2)) V(00,&) € Q. This means that the solu-
tion cannot stop in §2 equivalently in (a,b,) C T, it can
stops at a time point ostop € [a,b,] C T on a boundary
point (0 stop, ¢(0stop)) € 0N only. However, dealing with
impulsive differential equations, we have to analyse the

role of discontinuity points.
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Using the notations in equation (1), the behaviour of
impulsive systems is determined by Z(tx, y) := z(tx —0)+
9(te,y), z(ts —0) =1y € Qo. If Z(tw,z(tx —0)) ¢ Qo,
the process stops at (tx,z(tx —0)) € Q. If Z(tx,y) €
Qo, Y(tk,y) € Q then all trajectory landing at a disconti-
nuity point has continuation. If 7 is not onto {2¢ then any
initial value problem with (tx, &) € {tx} x (Q0 \ R(Z))
(where R(Z) is the range of Z) has a solution in an in-
terval [t, ¢, + 6),6 > 0, but no continuation backwards
(there is no history).

Uniqueness of solutions

If the functions f & g are local Lipschitz-continuous
for each fixed time parameter in their space variable then
an initial value problem has locally unique solution by
Caratheodory (see (Coddington and Levinson, 1955)).
This means that a solution of an initial value problem
can not split into more than one trajectory.

On the other hand trajectories may be connected to-
gether by impulse effects. This will make the flow of
solutions to form a tree structure instead of a flow with
trajectories coming from discontinuity points without his-
tory as leaves. This tree is directed, with orientation
from the leaves to the root which is called in-tree or anti-

arborescence (see (Fournier, 2013)).
CONCLUSION

We established an existence theorem for impulsive
differential equations with measurable right side which
facilitates the analysis of delayed impulsive differential
equations. The structure of solutions forms a tree struc-
ture, with orientation from the leaves to the root which
is an in-tree or anti-arborescence. This gives wide range
of modelling facilities by enabling to model and study
mixing new generations in addition to studying flows of

solutions.
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